The isolation and purification of a specific "protector" protein which inhibits enzyme inactivation by a thiol/Fe(III)/O2 mixed-function oxidation system.
نویسندگان
چکیده
Mixed-function oxidation systems comprised of Fe3+, O2, and electron donors such as thiol compounds, ascorbate, NAD(P)H/NAD(P)H oxidase, and xanthine oxidase/hypoxanthine, catalyze the inactivation of many enzymes. This report describes the isolation and purification of a soluble protein from Saccharomyces cerevisiae, which specifically inhibits the inactivation of various enzymes by a nonenzymatic Fe3+/O2/thiol mixed-function oxidase system. When thiol is replaced with another electron donor (e.g. ascorbate), this specific protein no longer protects against iron (or copper)/O2-dependent radical-induced enzyme inactivation. Purification steps included a polyethylene glycol precipitation followed sequentially by a chromatography on DE52 and high pressure liquid chromatography on phenyl, DEAE, and gel-filtrated columns. The final gel filtration step yielded two protein peaks exhibiting protector activity and possessing a Mr of 500,000 and 90,000. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of these two fractions gave a single band at 27 kDa suggesting that these protein species simply represent different oligomeric structures. The protector protein did not possess catalase, glutathione peroxidase, superoxide dismutase, or iron chelation activities. Since the protection activity reported herein is specific for mixed-function oxidation systems containing thiols, we propose that the protector protein functions as a sulfur radical scavenger.
منابع مشابه
Epoxidation of Alkenes and Oxidation of Alcohols with Hydrogen Peroxide Catalyzed by a Fe (Br8TPPS) Supported on Amberlite IRA-400
Iron (III) meso-tetrakis(p-sulfonatophenyl)-β-octabromoporphyrin supported on Amberlite IRA- 400 [Fe(Br8 TPPS)-Ad-400] is a robust and efficient catalyst for oxidation of alkenes and alcohols at room temperature. The catalyst exhibits a high activity and stability in hydrocarbon oxidation by H2 O2 . The method was useful in the oxidation of various primary, secondary-aliphatic, alicyclic and ar...
متن کاملAffinity Purification and Characterization of Recombinant Bacillus sphaericus Phenylalanine Dehydrogenase Produced by pET Expression Vector System
Cloning and expression of the L-phenylalanine dehydrogenase gene, from B. sphaericus in E. coli were done. The gene was cloned in the vector pET16b and transformed into E. coli BL21 (DE3). The functional form of the L-phenylalanine dehydrogenase enzyme was purified by affinity purification techniques, taking advantage of the ability of this enzyme to bind to the nucleotide site affinity dye, Re...
متن کاملOxidative inactivation of glutamine synthetase subunits.
Escherichia coli glutamine synthetase (GS) was inactivated by a nonenzymic mixed-function oxidation system composed of ascorbate, O2, and Fe(III). Partial inactivation of GS by this system leads to the formation of hybrid GS molecules (dodecamers) composed of both active and inactive subunits. Subunit interactions in these hybrid molecules are weaker than in the native enzyme, as indicated by t...
متن کاملIsolation, Purification and Characterization of a Thermophilic Alkaline Protease from Bacillus subtilis BP-36
The goal of this research was to isolate and identify the thermostable alkaline protease producing bacteria among several native Iranian microorganisms. At the end of screening program, a Bacillus subtilis BP-36 strain producing thermophilic alkaline protease was isolated from a hot spring in Ardebil province. The target enzyme was purified using a one-step Aqueous two-phase systems (ATPS) prot...
متن کاملCloning, Expression and Purification of Creatininase From Pseudomonas Pseudoalkaligene KF707 in E. coli.
Creatinine amidohydrolase(EC 3.5.2.10) catalyzes the reversible conversion of creatinine to creatine. Creatininase in combination with other enzymes is used for detection of creatinine in serum and urine which is of significant value for detection of renal, muscular and thyroid functions. The aim of this study was to produce recombinant creatininase enzyme in E.coli expression system to use it ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 263 10 شماره
صفحات -
تاریخ انتشار 1988